

Welcome to atlasclient’s documentation!

Contents:

	Installation

	Apache Atlas Client in Python
	Get started

	Features

	TODO features

	Credits

	Usage
	DiscoveryREST

	SavedSearchREST

	EntityREST

	LineageREST

	RelationshipREST

	TypesREST

	AdminREST

	Utility / Helpers
	parse_table_qualified_name()

	make_table_qualified_name()

	Credits
	Development Lead

	Contributors

	History
	1.0.0 (2019-08-10)

	0.1.8 (2019-08-08)

	0.1.7 (2019-07-08)

	0.1.6 (2019-04-26)

	0.1.5 (2019-04-24)

	0.1.4 (2019-04-16)

	0.1.3 (2019-04-05)

	0.1.2 (2018-03-27)

	0.1.1 (2018-03-07)

	0.1.0 (2018-01-09)

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install the package with pip:

$ pip install atlasclient

Apache Atlas Client in Python

[image: _images/atlasclient.svg]
 [https://pypi.python.org/pypi/atlasclient][image: _images/atlasclient1.svg]
 [https://travis-ci.org/jpoullet2000/atlasclient][image: _images/badge.svg]
 [https://coveralls.io/github/jpoullet2000/atlasclient?branch=master][image: Documentation Status]
 [https://atlasclient.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/jpoullet2000/atlasclient/]Apache Atlas client in Python.
Only compatible with Apache Atlas REST API v2.

	Free software: Apache Software License 2.0

	Documentation: https://atlasclient.readthedocs.io.

Get started

>>> from atlasclient.client import Atlas
>>> client = Atlas('<atlas.host>', port=21000, username='admin', password='admin')
>>> client.entity_guid(<guid>).status
>>> params = {'typeName': 'DataSet', 'attrName': 'name', 'attrValue': 'data', 'offset': '1', 'limit':'10'}
>>> search_results = client.search_attribute(**params)
>>> for s in search_results:
... for e in s.entities:
... print(e.name)
... print(e.guid)

Features

	Lazy loading: requests are only performed when data are required and not yet available

	Resource object relationships: REST API from sub-resources are done transparently for the user, for instance the user does not have to know that it needs to trigger a different REST request for getting the classifications of a specific entity.

TODO features

	allow multiprocessing

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Usage

To use atlasclient:

import atlasclient

This Python client is based on the Apache Atlas REST API v2 [https://atlas.apache.org/api/v2/index.html].

The following groups of resources can be accessed:

	DiscoveryREST

	EntityREST

	LineageREST

	RelationshipREST

	TypesREST

	AdminREST

Below a few examples to access some of the resources.

Make sure atlasclient is properly installed (see here).

First you need to create a connection object:

from atlasclient.client import Atlas
client = Atlas(your_atlas_host, port=21000, username='admin', password='admin')

Replace your_atlas_host by the actual host name of the Atlas server. Note that port 21000 might also be different in your case. Port 21000 is default port when using HTTP with Atlas, and 21443 for HTTPS.

To access the list of entry points:

from atlasclient.client import ENTRY_POINTS
ENTRY_POINTS

You’ll get a dictionary with (‘key’: ‘value’) corresponding to (‘client method’: ‘model class’): {‘entity_guid’: <class ‘atlasclient.models.EntityGuid’>, …}.
For example, we can use:

client.entity_guid(GUID)

‘entity_guid’ is used as a method of the ‘client’ object.

DiscoveryREST

This section explains how you can search for entities per attribute name, or search using a SQL-like query, and more ;).

Search by attribute

To search for entities with a special attribute name:

params = {'typeName': 'DataSet', 'attrName': 'name', 'attrValue': 'data', 'offset': '1', 'limit': '10'}
search_results = client.search_attribute(**params)
Info about all entities in one dict
for s in search_results:
 print(s._data)
Getting name and guid of each entity
for s in search_results:
 for e in s.entities:
 print(e.name)
 print(e.guid)

Search with basic terms

To retrieve data for the specified full text query:

params = {'attrName': 'name', 'attrValue': 'data', 'offset': '1', 'limit': '10'}
search_results = client.search_basic(**params)
for s in search_results:
 for e in s.entities
 print(e.guid)

Attribute based search (POST /v2/search/basic) for entities satisfying the search parameters:

data = {'attrName': 'name', 'attrValue': 'data', 'offset': '1', 'limit': '10'}
search_results = client.search_basic.create(data=data)
for e in search_results.entities:
 print(e.guid)

Search by DSL

To retrieve data for the specified DSL:

params = {'typeName': 'hdfs_path', 'classification': 'Confidential'}
search_results = client.search_dsl(**params)
for s in search_results:
 for e in s.entities:
 print(e.classificationNames)
 print(e.attributes)

DSL Search has a helper function available when you specify a SELECT clause or attribute in your search query.

_search_collection = client.search_dsl(**dsl_param)
for collection in _search_collection:

attributes = collection.flatten_attrs()

SavedSearchREST

This section explains how to get, create saved search, update or delete them.

Get all saved search for user

To retrieve saved search for the Atlas user:

search_saved = client.search_saved()
for s in search_saved:
 print(s._data)
 print(s.name)

Get saved search by name (for user)

To retrieve saved search for the Atlas user by name:

search_saved = client.search_saved(NAME)
print(s.name)
print(s.ownerName)

Create saved search by name (for user)

To create saved search for the Atlas user by name:

payload = """{
"name": "trying",
"ownerName": "svc_data_catalog_api",
"searchType": "BASIC",
"searchParameters": {
 "typeName": "rdbms_db",
 "excludeDeletedEntities": true,
 "includeClassificationAttributes": false,
 "includeSubTypes": true,
 "includeSubClassifications": true,
 "limit": 0,
 "offset": 0
},
 "uiParameters": "Select::0,Name::1,Owner::2,Description::3,Type::4,Classifications::5,Term::6,Db::7"
}"""

response = client.search_saved.create(data=json.loads(payload))

Update saved search by guid (for user)

To create saved search for the Atlas user by name:

payload = """{"guid": "fa1f15f0-09fc-403d-8ad7-3bcac379c3f9", "name": "trying2"}"""
response = client.search_saved.update(data=json.loads(payload))

To delete saved search by guid (for user)

To delete saved search for the Atlas user by guid:

client.search_saved.delete(guid=GUID)

EntityREST

This section explains how to create entities, update or delete them.

Create Entity

To create an entity, one needs to create a Python dictionary which will define the entity.
This can be done from a json file:

import json
with open('my_entity_file.json') as json_file:
 entity_dict = json.load(json_file)

One can also just define the dictionary in Python. Note that if the user wants to pass a ‘null’ value, he should assign a value None in Python dictionary. It will be automatically convert to ‘null’ when requesting.

Once the entity dictionary is created, the entity can actually be created on Atlas with:

client.entity_post.create(data=entity_dict)

Get entity by GUID

If you know the GUID of the entity you want to fetch, you can follow these steps to get all info about this entity:

entity = client.entity_guid(GUID)
entity._data

To access some specific attribute of that entity, say the description:

entity.entity['attributes']['description']

It shows up as a dictionary. So one can get the list of all attributes with:

entity.entity['attributes'].keys()

Update entity by GUID

Suppose you want to change the description of the entity here above and send it to Atlas:

entity.entity['attributes']['description'] = 'my new description'
entity.update(attribute='description')

Delete entity by GUID

To delete our entity:

entity.delete()

Get classifications by GUID

To get all classification type names related to an entity GUID:

entity = client.entity(GUID)
for classification_info in entity.classifications:
 for classification_item in classification_info.list:
 print(classification_item.typeName)

Update classifications by GUID

To update classifications to an existing entity represented by a guid:

entity = client.entity(GUID)
for classification_info in entity.classifications:
 for classification_item in classification_info.list:
 if classification_item.typeName == 'Semi-Confidential'
 classification_item.typeName = 'Confidential'
entity.classifications.update()

The entity will now be tagged as ‘Confidential’ instead of ‘Semi-Confidential’.

Create classifications by GUID

To add classifications to an existing GUID:

new_classifications = [{"typeName": "Confidential"},
 {"typeName": "Customer"}
]
entity = client.entity(GUID)
entity.classifications.create(data=new_classifications)

This will create 2 new classifications for the entity.

Get classification info by GUID and by classification type name

To get info about some specific classification for some entity:

entity = client.entity(GUID)
entity.classifications('Confidential').refresh()._data

The refresh() method is used to load data from the Atlas server, which is then stored in the _data attribute.

To get some specific info about the classification, say the ‘totalCount’:

entity.classifications('Confidential').totalCount

In that case, no need to use the refresh method since the client will see that the attribute totalCount is not yet available and will therefore send a request to the Atlas server.

Delete a classification by GUID

To delete a given classification from an existing entity represented by a GUID:

client.entity_guid(GUID).classifications('Confidential').delete()

This will delete the classification ‘Confidential’ for that specific entity only.

Get entities by bulk

To retrieve list of entities identified by its GUIDs:

bulk_collection = client.entity_bulk(guid=[GUID1, GUID2])

Get entities by bulk (with relationship attributes)

In some cases, you may want to need the details of relationship attributes along with entity,
There is a helper function available for that:

bulk_collection = client.entity_bulk(guid=[GUID1, GUID2])
for collection in bulk_collection:
 entities = collection.entities_with_relationships()

You can also specify the attributes as a list you want in particular to optimize implementation
for collection in bulk_collection:
 entities = collection.entities_with_relationships(attributes=["database"])

Create entities by bulk

To create entities:

bulk = {"entities" : [{
 "attributes": {"qualifiedName": "my_awesome_data", "name": "my_awesome_data_name", "path": "/my-awesome-path"},
 "status" : "ACTIVE",
 "version" : 3,
 "classifications" : [{"typeName" : "Customer"}, {"typeName" : "Confidential"}],
 "typeName" : "hdfs_path"}],
 "referredEntities": {}
 }
client.entity_bulk.create(data=bulk)

This will create an hdfs_path entity with 2 classifications.
Note that you can pass a list of entities (not limited to 1).

Delete multiple entities

To delete a list of entities:

client.entity_bulk.delete(guid=[GUID1, GUID2])

Associate a tag to multiple entities

To associate a tag to multiple entities:

entity_bulk_tag = {"classification": {"typeName": "Confidential"},
 "entityGuids": [GUID1, GUID2]}
client.entity_bulk_classification.create(data=entity_bulk_tag)

This will create the tag ‘Confidential’ both GUIDs.

Get entity by unique attribute

To fetch an entity given its type and unique attribute:

entity = client.entity_unique_attribute('hdfs_path', qualifiedName='/my/awesome/path')

Update entity for subset of attributes

To update a subset of attributes on an entity which is identified by its type and unique attribute:

TO BE IMPLEMENTED

To delete an entity by unique attribute

To delete an entity identified by its type and unique attributes:

entity = client.entity_unique_attribute('hdfs_path', qualifiedName='/my/awesome/path')
entity.delete()

LineageREST

Get lineage by GUID

To get lineage info about entity identified by GUID:

lineage = client.lineage_guid(GUID)
print(lineage.relations)
print(lineage.lineageDirection)

RelationshipREST

TO BE DONE…

TypesREST

Get typeDefs

Typedefs can be seen as a collection of type definitions in Atlas and can accessed with:

client.typedefs

This only creates an object is not actually requesting the Atlas server.
Suppose we want to access all elements of type ‘enumDefs’:

for t in client.typedefs:
 for e in t.enumDefs:
 for el in e.elementDefs:
 print(el.value)

We can access the classification types in a similar way:

for t in client.typedefs:
 for classification_type in t.classificationDefs:
 print(classification_type.description)

Idem for entityDefs and structDefs.

Delete typeDefs

To delete typedefs:

client.typedefs.delete(data=typedef_dict)

Where typedef_dict is the body to pass.
Here is an example as illustration:

typedef_dict = {
"enumDefs":[],
"structDefs":[],
"classificationDefs":[],
"entityDefs":[
 {
 "superTypes":[
 "DataSet"
],
 "name":"test_entity_7",
 "description":"test_entity_7",
 "createdBy": "admin",
 "updatedBy": "admin",
 "attributeDefs":[
 {
 "name":"test_7_1",
 "isOptional": True,
 "isUnique": False,
 "isIndexable": False,
 "typeName":"string",
 "valuesMaxCount":1,
 "cardinality":"SINGLE",
 "valuesMinCount":0
 },
 {
 "name":"test_7_2",
 "isOptional": True,
 "isUnique": False,
 "isIndexable": False,
 "typeName":"string",
 "valuesMaxCount":1,
 "cardinality":"SINGLE",
 "valuesMinCount":0
 }
]

 }
]
}

Create typeDefs

To create typedefs:

client.typedefs.create(data=typedef_dict)

An example for typedef_dict is given at the subsection above.

Update typeDefs

To update typedefs:

client.typedefs.update(data=typedef_dict)

An example for typedef_dict is given at the subsection above.

Get typeDefs headers

To get typedefs headers:

for header in client.typedefs_headers:
 print(header.name)
 print(header.category)

Get classificationDefs by GUID

To get classificationdefs by GUID:

class_defs = client.classificationdef_guid(CLASSIFICATION_GUID)
class_defs.name
class_defs._data

Get classificationDefs by name

To get classificationdefs by name:

CLASSIFICATION_NAME = 'Confidential'
class_defs = client.classificationdef_name(CLASSIFICATION_NAME)
class_defs.description

Get entityDefs by GUID

To get entitydefs by GUID:

entity_defs = client.entitydef_guid(ENTITY_GUID)
entity_defs.description

Get entityDefs by name

To get entitydefs by name:

ENTITY_NAME = 'hdfs_path'
entity_defs = client.entitydef_name(ENTITY_NAME)
entity_defs.description

Get enumDefs by GUID

To get enumdefs by GUID:

enum_defs = client.enumdef_guid(ENUM_GUID)
enum_defs.elementDefs

Get enumDefs by name

To get enumdefs by name:

ENUM_NAME = 'file_action'
enum_defs = client.enumdef_name(ENUM_NAME)
enum_defs.elementDefs

Get relationshipDefs by GUID

To get relationshipdefs by GUID:

relationship_defs = client.relationshipdef_guid(RELATIONSHIP_GUID)
relationship_defs._data

Get relationshipDefs by name

To get relationshipdefs by name:

relationship_defs = client.relationshipdef_guid(RELATIONSHIP_NAME)
relationship_defs._data

Get structDefs by GUID

To get structdefs by GUID:

struct_defs = client.structdef_guid(STRUCT_GUID)
struct_defs._data

Get structDefs by name

To get structdefs by name:

struct_defs = client.structdef_guid(STRUCT_NAME)
struct_defs._data

Get typeDefs by GUID

To get typedefs by GUID:

type_defs = client.typedef_guid(TYPE_GUID)
type_defs._data

Get typeDefs by name

To get typedefs by name:

type_defs = client.typedef_guid(TYPE_NAME)
type_defs._data

AdminREST

Get Admin Metrics

This endpoint is not yet mentioned in the official atlas documentation, but gives the complete
statistics available for Atlas >2.x only. Endpoint is api/atlas/admin/metrics:

for metrics in client.admin_metrics:
 # This gives the entities count for both active and deleted entities
 entity_stats = metrics.entity

 # Provides the general Atlas statistics, about the counts, and different timestamps
 general_stats = metrics.general

 # Provides a list of tags, along with the count of entities using that tag
 tag_stats = metrics.tag

Utility / Helpers

parse_table_qualified_name()

atlasclient provides helper function to parse the table qualified name and returns a dictionary
containing db_name, table_name and cluster_name as keys:

from atlasclient.utils import parse_table_qualified_name

Happy Scenario
qualified_name = 'database.table@cluster'
qn_dict = parse_table_qualified_name(qualified_name)
print(qn_dict["db_name"])
Output: database

print(qn_dict["table_name"])
Output: table

print(qn_dict["cluster_name"])
Output: cluster

In case if the entity is created manually and somehow does not fully satisfies the atlas qualified name
pattern, this helper function handles the edge cases:

qualified_name = 'table@cluster'
qn_dict = parse_table_qualified_name(qualified_name)
print(qn_dict["db_name"])
Output: default

print(qn_dict["table_name"])
Output: table

print(qn_dict["cluster_name"])
Output: cluster

make_table_qualified_name()

There is also a function to make the table qualified name, back from the parsed result.
It verifies if all three i.e., table_name, cluster and db parameters are there and not default.
If the value is default or not available, then this helper handles the edge case accordingly:

from atlasclient.utils import make_table_qualified_name

Happy Scenario
qualified_name = make_table_qualified_name('table', 'cluster', 'database')
print(qualified_name)
Output: 'database.table@cluster'

Credits

Development Lead

	Jean-Baptiste Poullet <jeanbaptistepoullet@gmail.com>

Contributors

	Verdan Mahmood <verdan.mahmood@gmail.com>

History

1.0.0 (2019-08-10)

	Adds the helper functions to parse the qualified name

	Updates the version to 1.x to get some confidence from community as the module is pretty stable now

0.1.8 (2019-08-08)

	Add support for Atlas’ Admin Metrics REST API

0.1.7 (2019-07-08)

	Add support for Atlas’ DSL Saved Search (#81)

	Fixes list lookups for searching

0.1.6 (2019-04-26)

	Call of DependentClass inflate (#79)

0.1.5 (2019-04-24)

	Add support for Post type Basic Search (#76)

0.1.4 (2019-04-16)

	fixes (BasicSearch, when no result in _data, etc)

0.1.3 (2019-04-05)

	HTTP Auth

	Basic search inflate

	relationshipAttributes

0.1.2 (2018-03-27)

	Bug fixes

	Response is returned after entity creation (easier to figure out the guid)

0.1.1 (2018-03-07)

	Bug fixes

	Most of the resources have been implemented (except RelationshipREST)

	Basic authentication (only the Basic token is sent on the network)

0.1.0 (2018-01-09)

	First push.

Index

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to atlasclient’s documentation!

 		
 Installation

 		
 Apache Atlas Client in Python

 		
 Get started

 		
 Features

 		
 TODO features

 		
 Credits

 		
 Usage

 		
 DiscoveryREST

 		
 Search by attribute

 		
 Search with basic terms

 		
 Search by DSL

 		
 SavedSearchREST

 		
 Get all saved search for user

 		
 Get saved search by name (for user)

 		
 Create saved search by name (for user)

 		
 Update saved search by guid (for user)

 		
 To delete saved search by guid (for user)

 		
 EntityREST

 		
 Create Entity

 		
 Get entity by GUID

 		
 Update entity by GUID

 		
 Delete entity by GUID

 		
 Get classifications by GUID

 		
 Update classifications by GUID

 		
 Create classifications by GUID

 		
 Get classification info by GUID and by classification type name

 		
 Delete a classification by GUID

 		
 Get entities by bulk

 		
 Get entities by bulk (with relationship attributes)

 		
 Create entities by bulk

 		
 Delete multiple entities

 		
 Associate a tag to multiple entities

 		
 Get entity by unique attribute

 		
 Update entity for subset of attributes

 		
 To delete an entity by unique attribute

 		
 LineageREST

 		
 Get lineage by GUID

 		
 RelationshipREST

 		
 TypesREST

 		
 Get typeDefs

 		
 Delete typeDefs

 		
 Create typeDefs

 		
 Update typeDefs

 		
 Get typeDefs headers

 		
 Get classificationDefs by GUID

 		
 Get classificationDefs by name

 		
 Get entityDefs by GUID

 		
 Get entityDefs by name

 		
 Get enumDefs by GUID

 		
 Get enumDefs by name

 		
 Get relationshipDefs by GUID

 		
 Get relationshipDefs by name

 		
 Get structDefs by GUID

 		
 Get structDefs by name

 		
 Get typeDefs by GUID

 		
 Get typeDefs by name

 		
 AdminREST

 		
 Get Admin Metrics

 		
 Utility / Helpers

 		
 parse_table_qualified_name()

 		
 make_table_qualified_name()

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 1.0.0 (2019-08-10)

 		
 0.1.8 (2019-08-08)

 		
 0.1.7 (2019-07-08)

 		
 0.1.6 (2019-04-26)

 		
 0.1.5 (2019-04-24)

 		
 0.1.4 (2019-04-16)

 		
 0.1.3 (2019-04-05)

 		
 0.1.2 (2018-03-27)

 		
 0.1.1 (2018-03-07)

 		
 0.1.0 (2018-01-09)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

